GSE: Group-wise Sparse and Explainable Adversarial Attacks Shpresim Sadiku, Moritz Wagner, Sebastian Pokutta

Cooperation: TU Berlin, ZIB DFG Cluster of Excellence Math+, German Federal Ministry of Education and Research Funding:

Motivation

- Sparse adversarial attacks often produce perturbations that are ambiguous about which regions of the image are important for classification
- Group-wise sparse methods often lead to reduced ambiguity about the salient regions in an image but
 - rely on predefined pixel partitionings
 - produce less sparse perturbations
- Generate imperceptible, group-wise sparse adversarial attacks that target the image's main objective, ensuring explainable perturbations without pixel partitioning or loss of sparsity

GSE Adversarial Attacks

 $\mathscr{X} = [I_{\min}, I_{\max}]^{M \times N \times C}$ is the set of feasible images and $\mathscr{L}: \mathscr{X} \times \mathbb{N} \to \mathbb{R}$ a classification loss function

Targeted sparse adversarial attacks find a perturbation w for given image x and target t via

$$\min_{w \in \mathbb{R}^{M \times N \times C}} \mathscr{L}(x+w,t) + \lambda \|w\|_p^p$$
(1)

- Solve (1) using forward-backward splitting for $p \in$ (0,1) with per-pixel trade-off parameter λ
- For $p = \frac{1}{2}$, there exists a closed-form solution for the proximal operator

$$\operatorname{prox}_{\lambda \|\cdot\|_{p}^{p}}(w) := \operatorname*{arg\,min}_{y \in \mathbb{R}^{M \times N \times C}} \frac{1}{2\lambda} \|y - w\|_{2}^{2} + \|y\|_{p}^{p}$$

Heuristically impose a group-sparsity structure by tuning each pixel's λ depending on its proximity to an already perturbed pixel via blurring

$$\lambda_{i,j}^{(k+1)} = \frac{\lambda_{i,j}^{(k)}}{\overline{M}_{i,j}}, \quad \overline{M}_{i,j} = \begin{cases} M_{i,j} + 1 & \text{if } M_{i,j} \neq 0\\ q, & \text{else} \end{cases}$$
$$M_{i,j} = \text{sign}\left(\sum_{c=1}^{C} |w^{(k)}|_{:,:,c}\right) * *K$$

After \tilde{k} iterations, solve (1) with p = 2, constrained to the set of pixels (i, j) with $\lambda_{i,j}^{(\tilde{k})} < \lambda_{i,j}^{(1)}$ using Nesterov's Accelerated Gradient Method

- adversaries Average Number of Changed Pixels (ACP) - $\frac{1}{m_s MN} \sum_{i=1}^{m_s} \|m^{(i)}\|_0$
- Average Number of Clusters (ANC) the number of connected clusters of perturbed pixels averaged over all successful attacks

model is a ResNet50.

Evaluation metrics and Results on Untargeted Attacks

- $(x^{(i)})_{0 < i < n}$ images of perturbation $(w^{(i)})_{0 < i < n}$
- Attack Success Rate ASR = $\frac{m_s}{n}$ for m_s successful

- Group-wise sparsity measure for a set $\{G_1, ..., G_k\}$ of overlapping *n*-by-*n* pixel patches
- $d_{2,0}(w) := |\{i : \|w_{G_i}\|_2 \neq 0, i = 1, ..., k\}|$

	Attack	ASR	ACP	ANC	ℓ_2	$d_{2,0}$
CIFAR-10 ResNet20	GSE (Ours) StrAttack FWnucl	100% 100% 94.6%	41.7 118 460	1.66 7.50 1.99	0.80 1.02 2.01	177 428 594
ImageNet ResNet50	GSE (Ours) StrAttack FWnucl	100% 100% 47.4%	1629 7265 13760	8.42 15.3 3.79	1.50 2.31 1.81	3428 11693 16345
ImageNet ViT_B_16	GSE (Ours) StrAttack FWnucl	100% 100% 57.9%	941 3589 7515	5.11 10.8 5.67	1.95 2.03 3.04	1964 8152 9152

Results on Targeted Attacks

		Best case				Average case					Worst case					
	Attack	ASR	ACP	ANC	ℓ_2	$d_{2,0}$	ASR	ACP	ANC	ℓ_2	$d_{2,0}$	ASR	ACP	ANC	ℓ_2	$d_{2,0}$
CIFAR-10 ResNet20	GSE (Ours)	100%	29.6	1.06	0.68	137	100%	86.3	1.76	1.13	262	100%	162	3.31	1.57	399
	StrAttack	100%	78.4	4.56	0.79	352	100%	231	10.1	1.86	534	100%	406	15.9	4.72	619
	FWnucl	100%	283	1.18	1.48	515	85.8%	373	2.52	2.54	564	40.5%	495	4.27	3.36	609
ImageNet ResNet50	GSE (Ours)	100%	3516	5.89	2.16	5967	100%	12014	14.6	2.93	16724	100%	21675	22.8	3.51	29538
	StrAttack	100%	6579	7.18	2.45	9620	100%	15071	18.0	3.97	20921	100%	26908	32.1	6.13	34768
	FWnucl	31.1%	9897	3.81	2.02	11295	7.34%	19356	7.58	3.17	26591	0.0%	N/A	N/A	N/A	N/A
ImageNet ViT_B_16	GSE (Ours)	100%	916	3.35	2.20	1782	100%	2667	7.72	2.87	4571	100%	5920	14.3	3.60	9228
	StrAttack	100%	3550	7.85	2.14	5964	100%	8729	17.2	3.50	13349	100%	16047	27.4	5.68	22447
	FWnucl	53.2%	5483	4.13	2.77	6718	11.2%	6002	9.73	3.51	7427	0.0%	N/A	N/A	N/A	N/A

Visual Analysis

Figure 1: Visual comparison of successful untargeted adversarial instances generated by our attack, StrAttack, and FWnucl. The attacked

Figure 2: Targeted adversarial examples generated by GSE. The target is airship for the first two rows, and golf cart for the last two rows. The attacked model is a VGG19.

Berlin Mathematics Research Center MATH

Interpretability Metrics

Z(x) are the logits of the vectorized image $x \in C$ $[I_{\min}, I_{\max}]^d$, l is the true label, and t a target label Use the Interpretability score (IS) for quantitative

analysis. For a given perturbation $w \in \mathbb{R}^d$

$$\mathsf{IS}(w, x, l, t) = \frac{\|B(x, l, t) \odot w\|_2}{\|w\|_2}$$

based on the Adversarial Saliency Map (ASM) [1], where

$$[B(x,l,t)]_i = \begin{cases} 1, & \text{if } [\mathsf{ASM}(x,l,t)]_i > v \\ 0, & \text{otherwise} \end{cases}$$

Utilize Class activation map (CAM) [2] for qualitative interpretability analysis

Interpretability Quantitatively

Figure 3: IS vs. percentile v for targeted versions of GSE vs. five other attacks. Evaluated on an ImageNet ViT_B_16 classifier (a), and CIFAR-10 ResNet20 classifier (b).

References

[1] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations of deep learning in adversarial settings. IEEE European symposium on security and privacy, 2016.

[2] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for discriminative localization. *IEEE conference on computer vision* and pattern recognition, 2016.

