

GSE: Group-wise Sparse and Explainable Adversarial Attacks

13th International Conference on Learning Representations (ICLR25)

S. Sadiku, M. Wagner and S. Pokutta

April 2025

ZUSE

Why do we impose structure in adversarial attacks?

- $\mathcal{L}:\mathcal{X}\times\mathbb{N}\rightarrow\mathbb{R}$ classification loss function
- Benign image $\pmb{x} \in \mathcal{X}$ of correct label $l \in \mathbb{N}$ and target label $t \in \mathbb{N}, t \neq l$
- Goal of a traditional targeted adversary succeed under minimal distortion

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}\mathcal{L}(\boldsymbol{x}+\boldsymbol{w},t)+\lambda\|\boldsymbol{w}\|_p^p$$

for $\lambda > 0$ and $p \ge 0$

- 1. $0 \leq p \leq 1$ changes very few pixels at high magnitudes
 - \hookrightarrow Easily perceptible even for the human eye (Fan et al., 2020)
- 2. p > 1 changes most of the pixels at low magnitudes
 - \hookrightarrow Appear as **noise** to humans but as features to DNNs (Ilyas et al., 2020))
- Our goal bridge the gap between human perception and machine interpretation by generating attacks that are
 - Imperceptible low magnitude
 - Targeted at the most important regions of the image

2. Method

ZUSE

Choose key group-wise sparse pixel coordinates

- Consider a vector of tradeoff parameters $\lambda \in \mathbb{R}_{>0}^{M \times N \times C}$
- Heuristically select group-wise sparse coordinates to perturb
 - 1. Build a mask $\boldsymbol{m} = \operatorname{sign} \left(\sum_{c=1}^{C} | \boldsymbol{w}^{(k)} |_{:,:,c} \right) \in \{0,1\}^{M \times N}$
 - 2. Apply Gaussian Blur Kernel $\boldsymbol{M} = \boldsymbol{m} * * \boldsymbol{K} \in [0, 1]^{M \times N}$
 - 3. Construct $\overline{\boldsymbol{M}} \in \mathbb{R}^{M \times N}$ via

$$\overline{\pmb{M}}_{ij} = egin{cases} \pmb{M}_{ij} + 1, & ext{ if } \pmb{M}_{ij}
eq 0 \ q, & ext{ else} \end{cases}$$

for $0 < q \leq 1$ 4 Set

$$\lambda_{i,j,:}^{(k+1)} = \frac{\lambda_{i,j,:}^{(k)}}{\overline{\mathbf{M}}_{i,j}}$$

 \hookrightarrow Denote the chosen pixel coordinates by V

Formulate a simplified optimization problem

$$\min_{\boldsymbol{w}\in V} \mathcal{L}(\boldsymbol{x}+\boldsymbol{w},t) + \mu \|\boldsymbol{w}\|_2$$
(1)

- $\mu > {\rm 0}$ controls perturbation magnitude
- Use projected Nesterov's accelerated gradient descent (NAG) to solve Eq. (1)

Proposition (S., Wagner and Pokutta, 2025)

The projected NAG solving Eq. (1) converges as NAG solving an unconstrained problem.

Contrary to benchmarks, our method does not depend on pixel partitionings

Table: Targeted attacks performed on ResNet20 classifier for CIFAR-10, and ResNet50 and ViT_B_16 classifiers for ImageNet. Tested on 1k images from each dataset, 9 target labels for CIFAR-10 and 10 target labels for ImageNet.

		Best case					Average case					Worst case				
	Attack	ASR	ACP	ANC	ℓ_2	$d_{2,0}$	ASR	ACP	ANC	ℓ_2	$d_{2,0}$	ASR	ACP	ANC	ℓ_2	$d_{2,0}$
CIFAR-10 ResNet20	GSE (Ours) StrAttack FWnucl	100% 100% 100%	29.6 78.4 283	1.06 4.56 1.18	0.68 0.79 1.48	137 352 515	100% 100% 85.8%	86.3 231 373	1.76 10.1 2.52	1.13 1.86 2.54	262 534 564	100% 100% 40.5%	162 406 495	3.31 15.9 4.27	1.57 4.72 3.36	399 619 609
ImageNet ResNet50	GSE (Ours) StrAttack FWnucl	100% 100% 31.1%	3516 6579 9897	5.89 7.18 3.81	2.16 2.45 2.02	5967 9620 11295	100% 100% 7.34%	12014 15071 19356	14.6 18.0 7.58	2.93 3.97 3.17	16724 20921 26591	100% 100% 0.0%	21675 26908 N/A	22.8 32.1 N/A	3.51 6.13 N/A	29538 34768 N/A
ImageNet ViT_B_16	GSE (Ours) StrAttack FWnucl	100% 100% 53.2%	916 3550 5483	3.35 7.85 4.13	2.20 2.14 2.77	1782 5964 6718	100% 100% 11.2%	2667 8729 6002	7.72 17.2 9.73	2.87 3.50 3.51	4571 13349 7427	100% 100% 0.0%	5920 16047 N/A	14.3 27.4 N/A	3.60 5.68 N/A	9228 22447 N/A

Figure: IS vs. percentile ν for targeted versions of GSE vs. five other attacks. Evaluated on an ImageNet ViT_B_16 classifier (a), and CIFAR-10 ResNet20 classifier (b). Tested on 1k images from each dataset, 9 target labels for CIFAR-10 and 10 target labels for ImageNet.

Thank you for your attention!