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1. Motivation

Why do we impose structure in adversarial attacks?
• L : X × N → R classification loss function
• Benign image x ∈ X of correct label l ∈ N and target label t ∈ N, t ̸= l
• Goal of a traditional targeted adversary - succeed under minimal distortion

min
w∈Rd

L(x + w , t) + λ∥w∥p
p

for λ > 0 and p ≥ 0
1. 0 ≤ p ≤ 1 changes very few pixels at high magnitudes

↪→ Easily perceptible even for the human eye (Fan et al., 2020)
2. p > 1 changes most of the pixels at low magnitudes

↪→ Appear as noise to humans but as features to DNNs (Ilyas et al., 2020))
• Our goal - bridge the gap between human perception and machine interpretation

by generating attacks that are
— Imperceptible - low magnitude
— Targeted at the most important regions of the image



2. Method

Choose key group-wise sparse pixel coordinates
• Consider a vector of tradeoff parameters λ ∈ RM×N×C

≥0
• Heuristically select group-wise sparse coordinates to perturb

1. Build a mask m = sign
(∑C

c=1 |w (k)|:,:,c
)

∈ {0, 1}M×N

2. Apply Gaussian Blur Kernel M = m ∗ ∗K ∈ [0, 1]M×N

3. Construct M ∈ RM×N via

M ij =
{

M ij + 1, if M ij ̸= 0
q, else

for 0 < q ≤ 1
4. Set

λ
(k+1)
i,j,: =

λ
(k)
i,j,:

M i,j

↪→ Denote the chosen pixel coordinates by V



2. Method

Solve a low magnitude adversarial attack over V
• Formulate a simplified optimization problem

min
w∈V

L(x + w , t) + µ∥w∥2 (1)

— µ > 0 controls perturbation magnitude
— Use projected Nesterov’s accelerated gradient descent (NAG) to solve Eq. (1)

Proposition (S., Wagner and Pokutta, 2025)

The projected NAG solving Eq. (1) converges as NAG solving an unconstrained
problem.

• Contrary to benchmarks, our method does not depend on pixel partitionings



3. Experiments

Results on targeted adversarial attacks

Table: Targeted attacks performed on ResNet20 classifier for CIFAR-10, and ResNet50 and
ViT B 16 classifiers for ImageNet. Tested on 1k images from each dataset, 9 target labels for
CIFAR-10 and 10 target labels for ImageNet.

Best case Average case Worst case

Attack ASR ACP ANC ℓ2 d2,0 ASR ACP ANC ℓ2 d2,0 ASR ACP ANC ℓ2 d2,0

CIFAR-10
ResNet20

GSE (Ours) 100% 29.6 1.06 0.68 137 100% 86.3 1.76 1.13 262 100% 162 3.31 1.57 399
StrAttack 100% 78.4 4.56 0.79 352 100% 231 10.1 1.86 534 100% 406 15.9 4.72 619
FWnucl 100% 283 1.18 1.48 515 85.8% 373 2.52 2.54 564 40.5% 495 4.27 3.36 609

ImageNet
ResNet50

GSE (Ours) 100% 3516 5.89 2.16 5967 100% 12014 14.6 2.93 16724 100% 21675 22.8 3.51 29538
StrAttack 100% 6579 7.18 2.45 9620 100% 15071 18.0 3.97 20921 100% 26908 32.1 6.13 34768
FWnucl 31.1% 9897 3.81 2.02 11295 7.34% 19356 7.58 3.17 26591 0.0% N/A N/A N/A N/A

ImageNet
ViT B 16

GSE (Ours) 100% 916 3.35 2.20 1782 100% 2667 7.72 2.87 4571 100% 5920 14.3 3.60 9228
StrAttack 100% 3550 7.85 2.14 5964 100% 8729 17.2 3.50 13349 100% 16047 27.4 5.68 22447
FWnucl 53.2% 5483 4.13 2.77 6718 11.2% 6002 9.73 3.51 7427 0.0% N/A N/A N/A N/A



3. Experiments

Quantitative evaluation

Figure: IS vs. percentile ν for targeted versions of GSE vs. five other attacks. Evaluated on an
ImageNet ViT B 16 classifier (a), and CIFAR-10 ResNet20 classifier (b). Tested on 1k images
from each dataset, 9 target labels for CIFAR-10 and 10 target labels for ImageNet.



Thank you for your attention!
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