# **S-CFE: Simple Counterfactual Explanations** Shpresim Sadiku, Moritz Wagner, Sai Ganesh Nagarajan, Sebastian Pokutta

Cooperation: TU Berlin, ZIB DFG Cluster of Excellence Math+, German Federal Ministry of Education and Research Funding:

### Motivation

- **Opaque Al Decisions:** Machine learning models impact critical areas but lack transparency
- **Counterfactual Explanations (CFEs):** Show "what-if" changes needed to alter a model's decision
- **Basic Principles:** CFEs must be Valid, Proximate, and Actionable
- Additionally, Plausible and Sparse for realistic suggestions
- **Complex Optimization:** Finding CFEs requires solving complex mathematical problems with non-convex and nonsmooth objectives

|             | Plausibility > |   |   |   |                  |   |    |   |    |   |
|-------------|----------------|---|---|---|------------------|---|----|---|----|---|
|             | 9              | 9 | 9 | 9 | 9                | 9 | 9  | 9 | 9  | 9 |
| els         | 9              | 9 | 9 | 9 | 9                | 9 | 4  | 9 | 9  | 4 |
| litered pix | 9              | 9 | 9 | 9 | 9                | 4 | 9  | 4 | IJ | 9 |
|             | 9              | 9 | 9 | 9 | 9                | 9 | 9  | 9 | q  | ġ |
|             | 9              | 4 | 9 | 9 | 4                | 9 | 4  | 9 | 4  | Ą |
| ot a        | 9              | 4 | 4 | 4 | 4                | 9 | 4  | 4 | 4  | 4 |
| )er         | 9              | 9 | 4 | 4 | 4                | 4 | 4  | 4 | ų. | 4 |
| JMC         | 4              | 9 | 4 | 9 | $\boldsymbol{q}$ | 9 | 4  | Ÿ | 4  | Ŷ |
| Z           | 9              | 9 | 4 | 4 | 4                | q | 14 | 4 | 4  | 4 |
| ¥           | 9              | 4 | 9 | 4 | 4                | ą | Ĥ  | 4 | 4  | 4 |

### **Background on CFEs**

- Input space  $\mathscr{X} \subseteq \mathbb{R}^d$ , output space  $\mathscr{Y}$
- Data  $\mathscr{D} = \{(x_i, y_i) \in \mathscr{X} \times \mathscr{Y}\}_{i=1}^n$  generated from joint density  $\psi : \mathscr{X} \times \mathscr{Y} \mapsto \mathbb{R}_+$
- Conditional input density  $q(x, y) := \psi(x|y)$
- Classifier  $f_l: \mathscr{X} \to \mathbb{R}^{|\mathscr{Y}|}$  and  $f(x) := \arg \max_i [f_l(x)]_i$

**Definition.** Given  $x_f \in \mathbb{R}^d$  such that  $f(x_f) = y_f$ , its **closest sparse data-manifold CFE** with respect to  $f(\cdot)$  and the data manifold of the target class  $y_{cf}$  is defined as  $x_{cf} \in \mathscr{X}$  solving

$$\begin{aligned} x_{cf} &:= \arg\min_{x \in \mathscr{X}} \|x - x_f\|_2^2 \\ \text{s.t. } x \in \mathscr{A} \\ f(x) &= y_{cf} \\ q(x, y_{cf}) \geq \tau \\ \|x - x_f\|_0 \leq m, \end{aligned}$$
(1)

where  $\mathscr{A}$  denotes the value range for features,  $m \in \mathbb{N}$  and  $\tau > 0$ .

## The Need for Plausibility



(b) S-CFE<sub>KDE</sub>/S-CFE<sub>GMM</sub>



(c) S-CFE<sub>kNN</sub>



Figure 1: Synthetic 2D Gaussian dataset demonstrating (a) methods without a plausibility term vs. (b)-(c) methods combined with a plausibility term.

### $\ell_0$ (std) LOF (std) Time Validity (std) $\ell_2$ (std) Method Dataset **2.59** (1.21) **2.00** (0.00) 1.23 (0.29) $S-CFE_{KDF}$ **100** (0.00) 12.7 2.91 (1.38) **2.00** (0.00) **1.12** (0.26) 13.3 S-CFE<sub>GMM</sub> **100** (0.00) Housing 3.64 (1.73) **2.00** (0.00) 1.17 (0.31) 5.85 S-CFE<sub>k</sub> **100** (0.00) 12 features 1.27 (0.38) **5.33** 3.50 (1.68) 6.86 (1.42) **100** (0.00) 2.93 (2.23) 2.99 (1.17) 1.36 (0.60) 7.51 CEM 94.0 (0.23) 3.31 (1.16) **2.00** (0.00) 0.99 (0.01) 12.4 S-CFE<sub>KDE</sub> **100** (0.00) **100** (0.00) 3.44 (1.09) **2.00** (0.00) **0.98** (0.02) 13.1 S-CFE<sub>GMM</sub> 4.04 (1.59) **2.00** (0.00) 1.01 (0.07) 5.80 $S-CFE_{k-NN}$ **100** (0.00) 13 features **3.21** (2.70) 7.13 (1.31) 1.03 (0.18) **4.95 100** (0.00) 5.40 (3.25) 5.14 (2.68) 1.07 (0.14) 5.71 92.0 (0.29) CEM **6.74** (2.92) **25.0** (0.00) **1.21** (0.18) 55.3 99.1 (0.09) S-CFE<sub>k-NN</sub> **99.8** (0.04) 7.04 (2.99) **25.0** (0.00) 1.30 (0.22) 13.1 784 features 99.3 (0.08) 8.06 (3.48) 118 (6.30) 1.32 (2.24) **11.8**

### **Robustness of Plausible CFEs to Input Shifts**



Figure 2: Robustness of the different methods. The distance of the input data points to the original data points on the x-axis and the distance of the generated CFEs to the CFE generated from the original data points on the y-axis. Tested on 100 data points from each data set.

## **Results for DNN classifiers**



## A Simple Algorithm for Generating CFEs

Two main issues with solving Eq. (1)

Berlin Mathematics Research Center

MATH

- 1. Conditional distribution  $q(\cdot, y)$  is unknown
- $\hookrightarrow$  Utilize plausibility constraints based on density estimates
- 2.0—norm for sparsity leads to NP-hard problems  $\hookrightarrow$  Utilize accelerated proximal gradient (APG) method
- Replace validity, plausibility, and sparsity constraints with penalty terms; enforce actionability via indicator function

$$x_{cf} := \arg\min_{x \in \mathbb{R}^d} \|x - x_f\|_2^2 + I_{\mathscr{A}}(x) + \gamma \mathscr{L}_f(x, y_{cf})$$

$$-\tau \hat{q}(x, y_{cf}) + \beta \|x - x_f\|_p^p$$

- $\hat{q}(\cdot, y_{cf})$  estimate for the density of target class  $y_{cf}$  in  $\mathscr{X}$
- $\mathscr{L}_{f}$  differentiable classification loss

$$h(x, y_{cf}) := \|x - x_f\|_2^2 + \gamma \mathscr{L}_f(x, y_{cf}) - \tau \hat{q}(x, y_{cf})$$

 $\hookrightarrow$  Smooth non-convex function of Lipschitz constant L  $\hookrightarrow$  Use differentiable density estimates such as  $\hat{q}_{KDE}(x, y_{cf})$ and  $\hat{q}_{GMM}(x, y_{cf})$  to compute the gradient

• 
$$g_p(x) := I_{\mathscr{A}}(x) + \beta ||x - x_f||_p^p$$

Solution is computed by solving  $x_{cf}^{t+1} := \arg \min_{x \in \mathbb{R}^d} \frac{L}{2} \left\| x - \left( x^t - \frac{1}{L} \nabla_{x^t} h(x^t, y_{cf}) \right) \right\|_{2}^{2} + g_p(x)$ • Closed-form for  $p \in \{0, 1/2, 2/3, 1\}$ 

### **Constraining the Sparsity**

Regularize sparsity using the indicator function

$$\|x-x_f\|_p^p \le m(x) := \begin{cases} 0, & \text{if } \|x-x_f\|_p^p \le m^p \\ +\infty, & \text{otherwise} \end{cases}$$

Reframe the problem

$$egin{aligned} x_{cf} &:= rgmin_{x\in\mathbb{R}^d} \|x-x_f\|_2^2 + I_\mathscr{A}(x) + \gamma \mathscr{L}_f(x,y_{cf}) \ &- au \widehat{q}(x,y_{cf}) + eta I_{\|x-x_f\|_p^p \leq m}(x) \end{aligned}$$

•  $g_p(x) := I_{\mathscr{A}}(x) + \beta I_{||x-x_f||_p^p \le m}(x)$  is an indicator function  $\hookrightarrow$  Solution for p = 0 coincides with the projection onto the intersection  $\{\|x - x_f\|_0 \le m\} \cap \mathscr{A}$ 

 $\hookrightarrow$  Convergence of APG to a critical point can be assured under some mild conditions



