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Abstract

Despite their impressive success in various machine learning tasks, deep neural networks are vul-
nerable to adversarial attacks. Through the addition of imperceptible levels of distortion to a given
image, such attacks can cause a learned network to quite spectacularly misclassify the perturbed
input. Several defense approaches including adversarial training and methods manipulating basis
function representations of images such as JPEG compression, PCA, wavelet denoising, and soft-
thresholding have shown success. The former defense works well in defending against small ℓp norm
attacks in the pixel representation, whereas the latter methods rely on removing high frequency
signal. We show that both training-based and basis-manipulation defense methods are significantly
less effective if we restrict the generation of adversarial attacks to the low frequency discrete wavelet
transform (DWT) domain, thus providing new insights into vulnerabilities of deep learning models.

1 Introduction
As machine learning models become more widespread in real-life applications, their security becomes a more
relevant aspect to consider. Despite the ability of deep neural networks to outperform humans in many tasks
(Silver et al., 2016), several instabilities of such architectures to adversarial attacks have been discovered
recently. Much research has since gone into the topic of developing adversarial examples and several defense
methods have been proposed (Akhtar and Mian, 2018; Tramer et al., 2020).

Defense methods against adversarial attacks can be categorized into two main types. Approaches of
the first type modify the training procedure or architecture of the model, usually with the aim of making
the function learned by the neural network smoother, for instance by augmenting the training data with
adversarial examples (Goodfellow et al., 2015; Shaham et al., 2018b; Cohen et al., 2019). However, such
defenses are only effective against first-order attacks that are of the same type as the ones used during the
training, for instance, small ℓp norm attacks in the pixel representation. A-priori, there is no restriction
on the attacker operating only in the pixel domain. Given access to the input image, the attacker has
the ability to operate in other natural representations of images, such as the one given by the discrete
cosine transform (DCT) basis. The perturbations generated in the new basis are still imperceptible but do
circumvent adversarially trained networks due to the large ℓp norm in the pixel basis (Awasthi et al., 2021).

Defenses of the second type do not modify the training procedure or the architecture, but rather modify
the data, aiming to detect or remove adversarial attacks often by smoothing the input data. Shaham et al.
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Figure 1: Example of successful pixel domain and low frequency C&W ℓ2 (DWT scale 4) white-box attacks.
Original image (a), pixel domain C&W ℓ2 adversarial image (b), pixel domain perturbation (c), low frequency
C&W ℓ2 adversarial image (d), and low frequency perturbation (e). MobileNet V3 Small model, image from
NIPS20171.

(2018a) investigate several such denoising techniques using PCA, JPEG compression, wavelet approximation,
and soft-thresholding of wavelet coefficients. Many of these methods represent the data using a subset of
its basis functions corresponding to the first principal components, in the case of PCA, or low frequency
terms, in the case of JPEG and wavelet-based methods. The defenses are applied as a pre-processing step
only at test time, and they are evaluated by their successful classification of benign and adversarial data.
Such defenses usually rely on removing high frequency signal (Dziugaite et al., 2016; Guo et al., 2018a; Xu
et al., 2017) and have shown ineffective against attacks whose search space is constrained to certain Fourier
frequencies or when smoothing steps are taken in the attack algorithm (Guo et al., 2018b; Sharma et al.,
2019; Zhang et al., 2020; Dabouei et al., 2020).

On the attack side, Guo et al. (2018b) construct a black-box attack by restricting the search space to a
low frequency DCT subspace. They claim that the density of adversarial examples in this subspace is higher
than in the whole image space, thus their attack needs fewer model queries than previous black-box attacks.
Santamaria-Pang et al. (2021) restrict their search space to the high frequency wavelet subbands obtained
by the discrete wavelet transform (DWT) basis to alter only local horizontal, diagonal, and vertical edge
content. They argue that this restriction helps disrupt early convolutional layers in CNNs.

In this work, we address the limitations of existing deep learning defense methods to adversarial attacks
generated in a low frequency domain, given by the DWT basis. The inability of DCT to localize an attack,
thus changing unnecessary information in an image, becomes a key factor to departure from attacks generated
in the time-domain (low and high frequencies) (Li and Li, 2017; Borji, 2019). In contrary to the Fourier
transformation, time-scale representations given by the DWT do not lose the spatial content coherence.
Moreover, considering that low frequency patterns are crucial for the state-of-the-art models to extract class-
specific information from images, we exploit a new pitfall of deep learning models by generating perturbations
in the low frequency wavelet domain (Wang et al., 2020). Our framework consists of three parts. First, we
use multiresolution analysis to decompose an image into low and high frequencies. Next, we adjust popular
adversarial attack techniques to design attacks that perturb only the low frequency coefficients. Finally,
we reconstruct the images from the perturbed low frequency coefficients and the original high frequency
part and investigate the susceptibility of adversarial training and image denoising techniques against our
white-box low frequency attacks. Figure 1 shows sample adversarial images and their perturbations in the
pixel domain and the low frequency wavelet domain produced by the C&W ℓ2 attack.

Contributions. To the best of our knowledge, our work is the first to design adversarial attacks in the
low frequency subspace given by the DWT basis. Our main contributions are the following.

1. We establish the vulnerability of neural networks to adversarial attacks generated in the low frequency
representation given by the DWT basis.

1https://www.kaggle.com/c/nips-2017-defense-against-adversarial-attack/data
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2. We design almost imperceptible low frequency adversarial attacks in the wavelet domain from three
popular white-box attacks and show that adversarial training2 and image processing methods, such
as JPEG compression, PCA denoising, soft-thresholding, and wavelet denoising, are significantly less
effective against such attacks.

2 Background
Among many possibilities to represent real-world data, a popular representation in the context of images is
the two-dimensional Discrete Wavelet Transform (DWT) basis (Daubechies, 1988). The advantage of DWT
is that it captures both frequency and location information, unlike, for example, the Fourier Transform.
Moreover, it is well known that signals when represented in the DWT basis have approximately sparse
representations (Kutyniok and Lim, 2011). This representation will allow us to separate the low frequency
part of an image and restrict adversarial attacks to operate only in the low frequency coefficients.

Multiresolution Analysis (MRA): We give a brief overview of multiresolution analysis (Mallat, 1999).

Definition 2.1. An orthonormal multiresolution analysis (MRA) of L2(R) (Hilbert space of square-integrable
complex valued functions on R) is an ordered chain of closed subspaces · · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · , where
Vj contains features of scale j, satisfying the following three conditions

1. Completeness:
lim
j→∞

Vj = L2(R) and lim
j→−∞

Vj = {0}.

2. Dyadic Similarity:
u(x) ∈ Vj if and only if u(2x) ∈ Vj+1.

3. Translation Seed:
There exists φ ∈ V0 such that (φ(x− k))k∈Z is an orthonormal basis (ONB) of V0.

Then φ is defined as a father wavelet or scaling function if φ generates an MRA.

Lemma 2.2. Let {Vi}i∈Z denote an MRA of L2(R). Then for φj,k(x) := 2
j
2φ(2jx−k), j, k ∈ Z, the {φj,k}k∈Z

form an ONB of Vj .

Hence, scaled translations of φ are sufficient to represent all of L2. Indeed, by the completeness of an
MRA, any signal u ∈ L2(R) can be approximated to any desired precision by its projection uj = Pju =∑

k⟨u, φj,k⟩φj,k onto Vj . Next, let us describe the fine detail that we obtain when moving from a coarser
space Vj to a finer scale space Vj+1. An orthogonal projection Pj : Vj+1 → Vj wipes out fine details, thus the
space of details is given by Wj := {(I − Pj)uj+1|uj+1 ∈ Vj+1}, where I is the identity. Hence, PjWj = {0}
and Vj+1 = Vj ⊕Wj . which means that an image u ∈ L2(R) is the accumulated effect of its details.

The dyadic similarity is faithfully inherited, i.e., η(x) ∈ Wj if and only if η(2x) ∈ Wj+1. From the
completeness condition we have

L2(R) = V0 ⊕

 ∞⊕
j=0

Wj

,
which means that an element u ∈ L2(R) is the accumulated effect of its details.

A mother wavelet is a function ψ ∈ W0 orthogonal to the father wavelet such that {ψ(x − k)}k∈Z form
an ONB of W0. By the second condition of an MRA, {ψj,k = 2j/2ψ(2jx− k)|k ∈ Z} is an ONB of Wj and
{ψj,k = 2j/2ψ(2jx− k)|j, k ∈ Z} is an ONB of L2(R), the so-called wavelet basis (Mallat, 1999).

2Throughout the text, adversarial training will denote adversarial training based on small ℓp norm perturbations.
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Then any u ∈ L2(R) can be represented in terms of the father and mother wavelet

u(x) =
∑
k

⟨u, φ0,k⟩φ0,k(x) +

∞∑
j=0

∑
k

⟨u, ψj,k⟩ψj,k(x).

The coefficients of the first term, so-called approximation coefficients, capture the main signal content while
the coefficients of the second term, the detail coefficients, capture the local details. Level j wavelet approxi-
mation results in an approximation image of resolution which is coarser as j grows, containing 2−2j of the
pixels of the original image.

2D Discrete Wavelet Transform (DWT): A direct generalization of the 1D MRA into L2(Z2) gives
the 2D Discrete Wavelet Transform (DWT). Let φ denote a scaling function whose corresponding wavelet is
given by ψ. By defining three wavelets ψ(1) = φψ,ψ(2) = ψφ, ψ(3) = ψψ, and for k ∈ {1, 2, 3}

ψ
(k)
j,(n1,n2)

(t1, t2) := 2
j
2ψ(k)

(
2jn1 − t1

2j
,
2jn2 − t2

2j

)
,

then the family {ψ(1)
j,n, ψ

(2)
j,n, ψ

(3)
j,n}n∈Z2 with n = (n1, n2) is an ONB of W 2

j and {ψ(1)
j,n, ψ

(2)
j,n, ψ

(3)
j,n}j∈Z,n∈Z2 is

an ONB of L2(Z2) (Santamaria-Pang et al., 2021). Low frequencies are represented by the approximation
coefficients ⟨u, φ̂j,n⟩, for φ̂ = φφ, whereas the detail coefficients ⟨u, ψ(k)

j,n⟩,∀k ∈ {1, 2, 3} are associated with
high frequencies at horizontal, vertical, and diagonal orientations.

The scaling function φ and the mother wavelet ψ can further be represented as quadrature mirror filter
banks G0 and G1 (Burros et al., 1998). Then, the 1D DWT of a signal x with N samples x[n], n ∈ 0, ..., N−1
is computed by passing it through two filters. By denoting H0[n] = G0[N − n], then the low frequency part
of the signal is given by a convolution of x and H0

xl[n] =

N−1∑
k=0

H0[k]x[n− k].

However, since half of the frequencies have been removed, half of the samples can be discarded. We denote
removing every other sample by the down-sampling operator ↓ followed by a 2, i.e., x[n] ↓ 2 = x[2n]. The
down-sampled low frequency part of x is then given by

xL[n] = xl[n] ↓ 2.

In order to derive the high frequency part of the signal, let H1[n] = G1[N −n]. Then we can obtain the high
frequency parts of the signal via

xH [n] = xh[n] ↓ 2 =

(
N−1∑
k=0

H1[k]x[n− k]

)
↓ 2.

For a 2D signal x ∈ Zni×nj , we initially filter each row to obtain xL = [x1L, ...,xniL] and xH = [x1H , ...,xniH ]
and then we pass again the columns of xL and xH through the filters H0 and H1. The four down-sampled
resulting signals xHH ,xHL,xLH ,xLL are the DWT coefficients of x for a decomposition of scale 1. Here
xLL gives an approximation of the signal and xHH ,xHL and xLH contain diagonal, vertical, and horizontal
details, respectively. Applying again the same DWT decomposition to the signal xLL, which was passed
through the low-pass filter twice, gives the DWT coefficients for decomposition of scale 2. This decomposition
is illustrated in Figure 2.

Next, let R denote a 2D DWT map that applies appropriately chosen filters as described above. Given
an image x ∈ [0, 1]n×c, its 2D DWT coefficients are written as

R(x) =

[
xLL xLH

xHL xHH

]
∈ Rn×c.

We can invert the 2D DWT coefficients by up-sampling and convolving with the filters G0 and G1 in the
inverse order in which we applied H0 and H1. Since we only apply down-sampling, up-sampling, and linear
convolution with fixed filter coefficients, 2D DWT is a linear transformation.
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Figure 2: The DWT decomposition tree for a basketball image from ImageNet dataset (Russakovsky et al.,
2015).

3 Wavelet-based Low Frequency Adversarial Attacks Modeling
Image compression techniques have long utilized the fact that low frequency signal consists of the most
crucial content-defining information in natural images, whereas high frequency spectrum often represents
the noise (Wallace, 1992b). Moreover, accuracy tests on deep learning models (see Figure 6 in Appendix
A.2) show that low frequency patterns are critical for the model to extract class-specific information from
images. Thus, we directly target the class-defining information by designing white-box attacks that alter the
approximation coefficients while preserving the detail coefficients of a given image x. We explicitly model
the adversarial perturbation from three popular attacks in the low frequency representation given by the
DWT basis.

3.1 Problem Formulation
Assume we are given an input image x ∈ X := [0, 1]n×c of n := ni×nj pixels and c colour channels, flattened
in a given order of the spatial components. A neural network classifier fθ : [0, 1]n×c → Rk maps the input x
to y containing the logits of k classes. The network is traditionally followed by softmax and cross-entropy
loss at supervised training or by argmax at test time. An input x with logits y = fθ(x) is correctly classified
if the prediction p(x) = argmaxi yi equals the true label of x.

Let L(θ,x, t) denote a classification loss function (for instance cross-entropy loss), defined on an output
logit vector y = fθ(x) with respect to the original true label t. We consider a white-box attack setting, where
fθ is known. Adversaries have the ability to modify a given image x ∈ X of correct label t ∈ {1, ..., k} into
an adversarial instance x̂ ∈ X , which may be wrongly classified by the network with label l ∈ {1, ..., k}, l ̸= t,
although the two images look visually indistinguishable. The latter is often measured by a small ℓp distortion
∥x̂− x∥p.

Hence, the ultimate goal of an adversary is to succeed under minimal distortion

max
x̂∈X :∥x̂−x∥p≤ε

L(θ, x̂, t). (1)

Following the original formulation of Szegedy et al. (2014), we can explicitly express the objective as a
function of variable r := x̂− x

max
∥r∥p≤ε

L(θ,x+ r, t), (2)

where the box constraint x+ r ∈ X is satisfied by clipping the adversarial example to be in X .
In this manuscript, we experiment with three popular adversarial attacks.

Fast Gradient Sign Method (FGSM) Goodfellow et al. (2015) aim to solve (2) for r such that its
ℓ∞-norm is smaller than some ε > 0. For small enough ε, the first-order approximation to this problem is
given by

δ ≈ argmax
∥r∥∞≤ε

L(θ,x, t) + r⊤∇xL(θ,x, t).

The resulting approximate maximal perturbation is

δ = ε sign(∇xL(θ,x, t)),
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and the adversarial example is given by

x̂ = clipX (x+ δ).

Iterative Fast Gradient Sign Method (I-FGSM) Kurakin et al. (2021) repeatedly apply the FGSM
perturbation for J iterations

x̂(0) = x,

x̂(j) = clipX ,ε

(
x̂(j−1) + α sign(∇xL(θ, x̂

(j−1), t))
)
,

and set the adversarial image to be x̂ = x(J), the output of the last iteration. The step size is typically set
to α = ε

J , where ε is the maximal total perturbation.

Auto-PGD Croce and Hein (2020) compute an intermediate iterate

z(j) = clipX ,ε

(
x̂(j−1) + η sign(∇xL(θ, x̂

(j−1), t))
)

as in I-FGSM. The perturbed image at iteration j is then obtained by

x(j) = clipX ,ε

(
x(j−1) + α

(
z(j) − x(j−1)

)
+ (1− α)

(
x(j−1) − x(j−2)

))
,

where α is typically set to 0.75. At each iteration in a set of checkpoints {w0, ..., wn}, the step size η is
decreased by half if one of the conditions

wj−1∑
i=wj−1

1L(θ,x(i+1),t)>L(θ,x(i),t) < ρ(wj − wj−1),

η(wj−1) ≡ η(wj) and L(wj−1)
max ≡ L(wj)

max

is met. L(wj)
max is the maximum loss up to iteration wj .

Carlini-Wagner (C&W) Carlini and Wagner (2017) approximate the constrained problem (1) by its
Lagrangian formulation and define a new loss function

Lcw(θ,x, t) = max(max
i ̸=t

(fθ(x̂)i)− fθ(x̂)t,−κ)

whose value is low when p(x̂) ̸= t. To ensure the box constraint x+ δ ∈ X is satisfied, they apply a change
of variables and optimize

min
w

{∥1
2
(tanh(w) + 1)− x∥22 + c · Lcw(θ,

1

2
(tanh(w) + 1), t)}, (3)

where κ controls the desired confidence of the model, and c is a trade-off parameter. The second part of
(3) is minimized when the logit of at least one class exceeds that of the correct class, by κ or more. We set
κ = 0 in our experiments. Given w, the adversarial example is obtained via

x̂ =
1

2
(tanh(w) + 1).

3.2 Wavelet-based Low Frequency Adversarial Attacks
Instead of the pixel domain, let us now consider a representation space with a corresponding map given by
R, the 2D DWT basis of Daubechies mother wavelet.
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The FGSM problem in the DWT space aims to solve

δ′ = argmax
∥r∥∞≤ε

L(θ,R−1(R(x) + r), t),

whose first-order approximation is given by

δ′ ≈ argmax
∥r∥∞≤ε

{
L(θ,R−1(R(x)), t) + r∇R(x)L(θ,R−1(R(x)), t)

}
.

Thus, we can derive the maximal perturbation

δ′ = ε sign(∇R(x)L(θ,R−1(R(x)), t)),

which in the case of a linear R is simply given by

δ′ = ε sign
(
R
(
∂L(θ,x, t)

∂x

))
. (4)

Low frequency FGSM To get a low frequency attack from (4), the perturbation is obtained by simply
applying R to the gradient and dropping the high frequency coefficients

δ′ = ε sign

 [R(∂L(θ,x,t)
∂x

)]
LL

0

0 0

 .

Finally, the adversarial example is given by

x̂ = clip[0,1](x+R−1(δ′)).

The dimensionality of the space of the low frequency coefficients decreases with the increase of the DWT
scale. Thus, for higher scale DWT, low frequency attacks are weaker on average than normal FGSM attacks.
Figure 3 illustrates low frequency FGSM attack for the first decomposition level.

DWT Attack DWT−1

H1

H0

2 ↓

2 ↓

H1

H0

2 ↓

2 ↓

H1

H0

2 ↓

2 ↓

G1

G0

2 ↑

2 ↑

G1

G0

2 ↑

2 ↑
Attack

G1

G0

2 ↑

2 ↑

Figure 3: The low frequency FGSM attack with DWT of scale 1 for a basketball image from ImageNet.

Low frequency I-FGSM From the low frequency FGSM, the low frequency I-FGSM is derived as

x̂(0) = x,

x̂(n) = clipx,ε

(
clip[0,1]

(
x̂(n−1) −R−1

(
δ(n)

)))
,

with

δ(n) = ε sign

 [R(∂L(θ,x̂(n−1),t)
∂x̂(n−1)

)]
LL

0

0 0

 ,

where we again use clipping to keep our images in the feasible set of inputs for the attacked model.
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Low frequency Auto-PGD We compute the intermediate iterate as

z(j) = clipX ,ε

(
R(x(j−1)) + η

 [R(∂L(θ,x(j−1),t)
∂x(j−1)

)]
LL

0

0 0

),
and the perturbed image at iteration j is given by

x(j) = R−1
(
clipX ,ε

(
R(x(j−1)) + α

(
z(j) −R(x(j−1))

)
+ (1− α)

(
R(x(j−1))−R(x(j−2))

)))
.

The step size decrease is identical to the pixel domain attack.

Low frequency C&W ℓ2 To convert C&W ℓ2 into a low frequency attack, we define x̃ = R(tanh−1(2x−
1)) and

ŵ =

[
w x̃LH

x̃HL x̃HH

]
.

For the perturbation δ, we choose

δ = R
(
1

2

(
tanh

(
R−1 (ŵ)

)
+ 1
))

−R(x).

Note that R−1(R(x) + δ) ∈ [0, 1]n×m. The new objective function is given by

min
{
∥R(

1

2
(tanh(R−1(ŵ)) + 1))−R(x)∥22 + c · f(1

2
(tanh(R−1(ŵ)) + 1))

}
,

which we optimize over w. The final adversarial example x̂ = 1
2 (tanh(R

−1(ŵ)) + 1) has the same high
frequency coefficients in the DWT domain as the original image.

3.3 Defenses against Adversarial Attacks
When adversarial examples were first pointed out, they were only generated in the pixel domain. With
the development of adversarial training techniques (Goodfellow et al., 2015; Madry et al., 2018), adversarial
attacks in different representation spaces came into play. Such attacks, even though imperceptible for the
human eye, are able to circumvent adversarial training (Dabouei et al., 2020), as they result in perturbations
of large ℓp norm in the pixel space while maintaining a small distance to the original image in a different
representation space. Yet however, the structure of such attacks is often made up of high frequency noise.
In such cases, traditional image processing techniques, in particular the celebrated JPEG compression, have
shown to be effective defenses (Guo et al., 2018a).

Recent works have further exploited vulnerabilities of deep learning models by constraining the search
space of black-box attacks to certain Fourier frequencies or generating smooth attacks through smoothing
steps in the attack algorithm (Guo et al., 2018b; Zhang et al., 2020; Dabouei et al., 2020). In the realm of
robust machine learning, we examine the effectiveness of five popular defense techniques; namely adversarial
training, JPEG compression, PCA denoising, soft-thresholding, and wavelet denoising against our wavelet-
based low frequency adversarial attacks. Let us first give a brief overview of such defense methods.

Adversarial Training (Madry et al., 2018) aims to solve the following robust objective function

min
θ

E(x,t)∼D

[
max

x̂∈X :∥x̂−x∥p≤ε
L(θ, x̂, t)

]
.

To solve the above problem, the projected gradient descent (PGD) method proposes an alternated scheme,
by performing gradient ascent to maximize the inner objective and gradient descent to minimize the outer
objective.
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Table 1: Accuracy of the model that has been adversarially trained with PGD for ℓ∞ robustness, attacked
by FGSM in pixel domain, DWT domain, and low frequency DWT domain, tested on 10,000 images from
the CIFAR10 test set. J denotes the DWT scale for the low frequency attack.

pixel ℓ∞ l.f. J = 1 ℓ∞ DWT ℓ∞ Nat. Acc.

31.62% 27.80% 36.34% 72.88%

Figure 4: The figure shows examples of images from the CIFAR-10 dataset with their corresponding adver-
sarial examples generated by I-FGSM in the low frequency DWT domain (with a scale of 2), as well as their
differences in the pixel and DWT domain. The perturbation values are scaled by 10 for visibility.

However, this method trains classifiers to only defend against small ℓp norm attacks in the pixel domain.
One could envision generating imperceptible examples by perturbing the image in the low frequency DWT
basis that are far away from the original image in the original pixel basis, thus fooling an adversarially trained
classifier in the pixel domain. For instance, in Table 1 we show the performance of an adversarially trained
neural network in the pixel domain. Note that the trained network has poor robustness against attacks
which were not considered during training, such as scale 1 low frequency attacks in the DWT domain.

Figure 4 shows examples of images from the CIFAR-10 dataset (Krizhevsky et al., 2009) and the corre-
sponding adversarial examples generated by I-FGSM in the low frequency DWT domain of scale 2, as well as
their differences in the pixel and the DWT domain. Most of the work on the construction of imperceptible
adversarial examples for CIFAR-10 has been conducted with ℓ∞ perturbations up to a magnitude of ε = 0.03
in the pixel basis. However, the low frequency I-FGSM adversarial images exhibited in Figure 4, while being
imperceptible, are far from the original images in terms of ℓ∞ norm in the pixel representation.

JPEG Compression The traditional JPEG compression technique (Wallace, 1992a; Shaham et al., 2018a)
consists of five processing steps from which in theory only two are lossy.

1. Conversion from RGB to luminance, blue, and red chrominance (YCbCr) colour space.

2. 2× 2 lowpass filtering and subsampling of the Cb and Cr channels.

3. Splitting each channel into 8 × 8 blocks and applying 2D discrete cosine transform to each block
(Wallace, 1992a, Section 4.1).
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4. Quantization of the frequencies, i.e., dividing each frequency coefficient by a constant (determined by
the quality setting) and rounding to the nearest integer.

5. Lossless compression entropy coding was omitted in our implementation.

PCA denoising This pre-processing method is performed for each of the c colour channels of an image x
separately. Concretely, considering an image as a matrix X of size ni×nj, PCA denoising represents it by its
low-rank approximation, while keeping as much variance as possible in the original matrix. This procedure
can be summarized as Xpca = XUUT , where U is a nj × k matrix containing the eigenvectors corresponding
to the k most dominant eigenvalues of the nj × nj covariance matrix 1

ni
(X − X̄)T (X − X̄).

Soft-thresholding (ST) and Wavelet Denoising (WD) Mallat (1999) applies soft-thresholding in the
wavelet domain. Concretely, if we let R denote a DWT and Sλ the soft-thresholding operator using λ as
the threshold, then the processed image is given by x̂ = R−1(Sλ(R(x))).3 Similarly, wavelet denoising is
thresholding in the wavelet domain. We use the VisuShrink wavelet denoising procedure which uses the
universal threshold λ = σ

√
2 log I, where σ is the estimated noise variance and I is the number of pixels

(Donoho and Johnstone, 1994).

4 Experiments
We next demonstrate the effectiveness of the above-mentioned defense techniques against our wavelet-based
low frequency adversarial attacks.

4.1 Setup
We experiment with the CIFAR-10 dataset, which consists of images of dimensionality 32 × 32 × 3 and is
split into a training set of 50,000 images, on which we train a CNN classifier as in (Carlini and Wagner,
2017), and a test set of 10,000 images, each with a mini-batch size of 100.

For adversarial training, we use 40 iterations of projected gradient descent with a maximal ℓ∞ distortion
of 0.03. The quality of JPEG compression is set to 25%, PCA is performed by retaining the largest 10
principal components using PCA from the sklearn decomposition package, wavelet denoising is performed
using denoise_wavelet from the skimage restoration package, soft-thresholding in the wavelet domain is
performed using the pytorch_wavelets package (Cotter, 2019).

For C&W we do 1000 iterations per search step. To compute the data for Table 2 we use 10 search steps.
To generate Figure 9 (c) and (f) we set c = 10−4 and to control the magnitude we multiply the perturbations
with some ε ≥ 1 (Guo et al., 2018a). For (low frequency) FGSM and I-FGSM in Figure 9 (a), (b), (d), and
(e) we use ε ∈ [0, 0.1] in increments of 0.005. For Table 2 we perform binary search on ε for FGSM and
I-FGSM, as well as on c for C&W, to find the smallest perturbation for which an adversarial attack can be
found. The step size for I-FGSM is set to α = ε/s, where s denotes the number of steps.

4.2 Evaluation
The average normalized ℓ2 similarity (Guo et al., 2018a) between benign images x1, ...,xm and their corre-
sponding adversarial examples x̂1, ..., x̂m is defined as

1

m

m∑
i=1

∥xi − x̂i∥2
∥xi∥2

.

Note that this evaluation criterion will be identical on the pixel basis and the wavelet basis. The accuracy of
a model is measured by only considering the label with the highest confidence for each image, i.e., via top-1
accuracy.

3Note that DWT is surjective, i.e., R−1 exists.
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Table 2: Fooling ratio performance comparison for attacks in normal and defense models. ND - no defense.

Method ND JPEG WD ST PCA

C&W 1.00 0.37 0.35 0.43 0.40
l.f. C&W 0.98 0.46 0.46 0.70 0.58
FGSM 0.90 0.37 0.35 0.46 0.38
l.f. FGSM 0.62 0.43 0.40 0.54 0.45
I-FGSM 0.99 0.35 0.32 0.44 0.35
l.f. I-FGSM 0.82 0.40 0.42 0.52 0.44

4.3 Results
We examine the accuracy of the attacked model which has undergone a defense method and use this as
a measure to compare the performance of the adversarial attacks in the pixel domain and the ones in the
low frequency wavelet domain. Concretely, we generate perturbations using FGSM, I-FGSM, and C&W ℓ2
in the pixel basis and in the low frequency DWT basis. We apply each of the defenses to the adversarial
examples, feed them back to the model, and measure the top 1 accuracy against the normalized ℓ2 similarity
of the adversarial examples and the original images.

Figure 9 (a), (b), and (c) show that soft-thresholding is the worst-performing method when clean data
is used. As we increase the distortion of perturbations attacking the model in the pixel domain, soft-
thresholding and JPEG compression quickly increase their performance, but are still surpassed by adversarial
training. However, when the FGSM and I-FGSM attacks are performed in the low frequency DWT domain,
soft-thresholding is close to the worst-performing defense method across all tested maximal distortion values
(see Figure 9 (d)-(f)).

Most importantly, in Figure 9 (d), (e), and (f) we observe that all defense methods are significantly less
effective at defending against the low frequency attacks compared to the original attacks. Note that the low
frequency attacks are weaker than the original attacks since we significantly decrease the dimensionality of
the search space for perturbations when attacking the low frequency DWT domain. In the cases of (low
frequency) FGSM and I-FGSM (Figure 9 (a), (b), (d), (e)), most defenses do not increase the model accuracy
at all when the attacks are performed in the low frequency DWT domain. In the case of (low frequency)
C&W ℓ2 (Figure 9 (c) and (f)), the effectiveness of attacks in the pixel domain and the low frequency DWT
domain is the same for an undefended model as well as for three of the five defenses. However, JPEG
Compression and soft-thresholding perform much worse when defending against C&W ℓ2 attack in the low
frequency DWT domain.

From Table 2 we conclude that, if we allow binary search, low frequency C&W ℓ2 attack outperforms
the original C&W ℓ2 attack in circumventing all tested defense methods. Moreover, using binary search
over ε, FGSM and I-FGSM in the low frequency DWT domain, while being weaker than their pixel domain
counterparts when attacking an undefended model, do also outperform original attacks at circumventing all
tested defenses.

11



0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8
T
op

1
A

cc
ur

ac
y

(a) FGSM

0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8

(b) I-FGSM

0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8

(c) C&W

0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8

Normalized ℓ2 Sim.

T
op

1
A

cc
ur

ac
y

(d) Low freq. FGSM

0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8

Normalized ℓ2 Sim.

(e) Low freq. I-FGSM

0 2 4 6

·10−2

0

0.2

0.4

0.6

0.8

Normalized ℓ2 Sim.

(f) Low freq. C&W

No Defense Adv. Trained JPEG Wavelet Denoising Soft-thresholding PCA

Figure 5: Model accuracy with pre-processing defenses attacked by FGSM, I-FGSM and C&W ℓ2 in pixel
domain (a), (b), (c), and low frequency DWT domain (d), (e), (f). Tested on 10,000 images from the CIFAR-
10 dataset. The DWT scale was set to 1 for attacking the adversarially trained model, and 2 for all other
plots.

5 Conclusions and Future Work
We examined limitations of existing deep learning defense methods, which either guarantee robustness to
small ℓp norm attacks in the pixel domain or rely on removing high frequency signal. We demonstrated
vulnerabilities of such defense techniques from the perspective of almost imperceptible attacks generated in
the low frequency representation given by the DWT basis. We designed practical low frequency adversarial
attacks in the wavelet domain from three popular white-box attacks against whom we employed traditional
defense methods such as adversarial training and image processing methods, such as JPEG compression, PCA
denoising, soft-thresholding, and wavelet denoising. We showed that, while being weaker at a given maximal
distortion, our attacks were able to outperform the original attacks at circumventing defense methods. Given
this vulnerability of neural networks, we wish to study in future work how low frequency attacks can help
in designing state-of-the-art defense strategies.
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A Appendix

A.1 Missing Proofs
In this section, we present the detailed proof of Lemma 2.2.

Proof. Since φ(x− k) ∈ V0, applying dyadic similarity j times gives 2j/2φ(2jx− k) ∈ Vj . Orthonormality

⟨φj,k, φj,l⟩ =
∫

2jφ(2jx− k)φ(2jx− l)dx = δk,l,

follows by substituting y = 2jx and using translation seed of (φ(x − k))k∈Z. Finally, given ψ ∈ Vj , dyadic
similarity induces ψ(2−jx) =

∑
k∈Z αkφ(x − k), hence ψ(y) =

∑
k∈Z α̃kφj,k(x) for y = 2−jx and α̃k =

2−j/2αk.

A.2 Additional Experiments
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Figure 6: Accuracy of model trained on clean data and adversarially trained model. Some wavelet coefficients
of the test images are multiplied by 0 ≤ λ ≤ 1. Either the low frequency, HL, LH, HH, or all high frequency
coefficients are multiplied by λ.
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Figure 7: ResNet20 model accuracy with pre-processing defenses attacked by FGSM, I-FGSM, and Auto-
PGD in pixel domain (a), (b), (c), low-frequency DWT domain with decomposition scale J = 1 (d), (e), (f),
and J = 2 (g), (h), (i). Tested on 10,000 images from the CIFAR-10 dataset.
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Figure 8: Model accuracy with pre-processing defenses attacked by FGSM, I-FGSM, and Auto-PGD in pixel
domain (a), (b), (c), and low-frequency DWT domain (d), (e), (f). Tested on 10,000 images from the MNIST
dataset.
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Figure 9: Difference of ResNet20 model accuracy with pre-processing defenses and without defense. The
model is attacked by FGSM, I-FGSM, and Auto-PGD in pixel domain (a), (b), (c), and low-frequency DWT
domain (d), (e), (f). Tested on 10,000 images from the CIFAR-10 dataset.
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