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Deep Neural Networks (DNNs)

DNNs for (Image) Classification

High success rate
Robustness?

Highly unstable - minor input shifts
result in major output shifts [Sze+13]
Utilize this vulnerability of NNs to al-
ternate their decision
Provide suggestions to achieve the de-
sired outcome
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Figure 1: 1-hidden layer feed-forward NN.
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Deep Learning Safety-critical Applications

Self-driving Face recognition

Worst-case scenarios
Life-threatening accidents in autonomous driving
Information leakage in face recognition
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Inverse Classification
Input space X ⊆ Rd

Output space Y of class labels
Classifier fl : X → R|Y|

Final decision

f(x) = argmax
i

[fl(x)]i

Adversarial examples for images
X = [Imin, Imax]

M×N×C

correctly classified image + small perturbation = incorrectly classified image

visually indistinguishable

but

f(x) ̸= f(y)
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Spot the Difference
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Existence of Adversarial Attacks

Phenomenon of adversarial attacks reveals critical vulnerabilities in DNNs
Standard training methods produce non-robust models when trained on data lying in
low-dimensional subspaces [MYV23]
↪→ Large gradients in directions orthogonal to the data subspace
While humans perceive adversarial attacks as noise, machines perceive them as features
[Ily+19]
↪→ Learning from adversarial attacks achieves similar accuracy to learning from normal
training data [KKY24]
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Adversarial Attack Generation

White-box attack - fl is known
Benign image x ∈ X of correct label l ∈ N
Target label t ∈ N, t ̸= l

L : X × N→ R classification loss function (e.g. cross-entropy loss) tailored for f
Goal of a traditional adversary - succeed under minimal distortion

min
w∈Rd

L(x+w, t) + λ∥w∥pp (1)

for λ > 0 and p ≥ 0
0 ≤ p ≤ 1 changes very few pixels at high magnitudes
↪→ Easily perceptible even for the human eye [Fan+20]
p > 1 changes most of the pixels at low magnitudes
↪→ Appear as noise to humans but as features to DNNs [Ily+19]

Our goal - bridge the gap between human perception and machine interpretation by
generating attacks that are

Imperceptible - low magnitude
Targeted at the most important regions of the image
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GSE: Group-wise Sparse and Explainable Adversarial Attacks

joint with

Moritz Wagner (TU Berlin & ZIB)
Sebastian Pokutta (TU Berlin & ZIB)

To Appear in the Proceedings of International Conference on Learning Representations
(2025)
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Proximal Operator

Definition ([PB+14])
The proximal operator with respect to a (possibly non-smooth) function g : Rd → R is
defined for any w ∈ Rd

proxλg(w) := argmin
y∈Rd

1

2λ
∥y −w∥22 + g(y),

where λ > 0 is a given parameter.

Useful for analyzing non-smooth functions g
Can be computed analytically for many such functions
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Sparse Adversarial Attack Generation

Express problem in Eq. (1) as a sum of two functions
h(w) := L(x + w, t) and g(w) := λ∥w∥p

p

Make a quadratic approximation h̃L(w) to h(w) and replace ∇2h(w) by L
2
I

Note h(·) is a smooth, possibly non-convex function, whose gradient has Lipschitz
constant L

wk+1 := argmin
y∈Rd

h̃L(w
k) + g(y)

= argmin
y∈Rd

∇wth(wk)⊤(y −wk) +
L

2
∥y −wk∥22

+ g(y)

= argmin
y∈Rd

L

2
∥y − [wk −

1

L
∇wkh(w

k)]∥22

+ g(y)

= prox 1
L
g

(
wk −

1

L
∇wkh(w

k)

)
The inverse Lipschitz constant is further replaced by a step size sequence (αk)k∈N
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Sparse Adversarial Attack Generation (cont.)

Solve Eq. (1) via Forward-backward Splitting

Forward-Backward Splitting Attack
Require: Image x ∈ X , target label t, loss function L, sparsity parameter λ > 0, step sizes
αk, number of iterations K

1 Initialize w(0) ← 0

2 for k ← 0, ...,K − 1 do
3 w(k+1) ← proxαkλ∥·∥

p
p

(
w(k) − αk∇w(k)L(x+w(k), t)

)
4 end for
5 return ŵ = w(K)

Closed-form solution for g(w) := λ∥w∥pp and p ∈ {0, 1/2, 2/3, 1}
Generates sparse but perceptible adversarial attacks [Fan+20]

Utilize Forward-backward Splitting with Nesterov momentum for more efficiency
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AdjustLambda

Consider a vector of tradeoff parameters λ ∈ RM×N×C
≥0

Determine key group-wise sparse coordinates to perturb
↪→ Heuristically select group-wise sparse coordinates [SWP23]

1 Build a mask m = sign
(∑C

c=1 |w(k)|:,:,c
)

∈ {0, 1}M×N

2 Apply Gaussian Blur Kernel M = m ∗ ∗K ∈ [0, 1]M×N

3 Build M ∈ RM×N via

Mij =

{
Mij + 1, if Mij ̸= 0

q, else

for 0 < q ≤ 1
4 Set

λ
(k+1)
i,j,: =

λ
(k)
i,j,:

Mi,j

Denote the chosen pixel coordinates by V
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Solve a Low Magnitude Adversarial Attack Only Over V

Formulate a simplified optimization problem

min
w∈V

L(x+w, t) + µ∥w∥2 (2)

µ > 0 controls perturbation magnitude
Use projected Nesterov’s accelerated gradient descent (NAG) to solve Eq. (2)

Lemma ([SWP23])
The projected NAG solving Eq. (2) converges as NAG solving an unconstrained problem.
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Evaluation Metrics

(x(i))0<i≤n images of perturbation (w(i))0<i≤n

Attack Success Rate ASR = ms
n

for ms successful adversaries
Average Number of Changed Pixels

ACP =
1

msMN

ms∑
i=1

∥m(i)∥0,

Perform depth-first search (DFS) on m from each undiscovered 1-entry
Average Number of Clusters (ANC) – average the DFS runs needed to discover all
1-entries
Group-wise sparsity

d2,0(w) :=
∣∣{i : ∥wGi

∥2 ̸= 0, i = 1, ..., k
}∣∣

G = {G1, ..., Gk} contains index sets of all overlapping patches in w
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Results on (Un)targeted Attacks

Tabelle 1: Untargeted attacks on ResNet20 classifier for CIFAR-10, and ResNet50 and ViT_B_16
classifiers for ImageNet. Tested on 10k images of each dataset.

Attack ASR ACP ANC ℓ2 d2,0

CIFAR-10
ResNet20

GSE (Ours) 100% 41.7 1.66 0.80 177
StrAttack 100% 118 7.50 1.02 428
FWnucl 94.6% 460 1.99 2.01 594

ImageNet
ResNet50

GSE (Ours) 100% 1629 8.42 1.50 3428
StrAttack 100% 7265 15.3 2.31 11693
FWnucl 47.4% 13760 3.79 1.81 16345

ImageNet
ViT_B_16

GSE (Ours) 100% 941 5.11 1.95 1964
StrAttack 100% 3589 10.8 2.03 8152
FWnucl 57.9% 7515 5.67 3.04 9152

Tabelle 2: Targeted attacks (average case) performed on ResNet20 classifier for CIFAR-10, and
ResNet50 and ViT_B_16 classifiers for ImageNet. Tested on 1k images from each dataset, 9
target labels for CIFAR-10 and 10 target labels for ImageNet.

Attack ASR ACP ANC ℓ2 d2,0

CIFAR-10
ResNet20

GSE (Ours) 100% 86.3 1.76 1.13 262
StrAttack 100% 231 10.1 1.86 534
FWnucl 85.8% 373 2.52 2.54 564

ImageNet
ResNet50

GSE (Ours) 100% 12014 14.6 2.93 16724
StrAttack 100% 15071 18.0 3.97 20921
FWnucl 7.34% 19356 7.58 3.17 26591

ImageNet
ViT_B_16

GSE (Ours) 100% 2667 7.72 2.87 4571
StrAttack 100% 8729 17.2 3.50 13349
FWnucl 11.2% 6002 9.73 3.51 7427
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Interpretability Metrics
Z(x) logits of vectorized image x ∈ [Imin, Imax]d

Adversarial Saliency Map (ASM), l− true label

[ASM(x, l, t)]i =

(
∂Z(x)t

∂xi

) ∣∣∣∣∂Z(x)l∂xi

∣∣∣∣1S(i)

S =

{
i ∈ {1, ..., d}

∣∣∣∣ ∂Z(x)t∂xi
≥ 0 or

∂Z(x)l

∂xi
≤ 0

}
Binary mask B(x, l, t) ∈ {0, 1}d

[B(x, l, t)]i =

{
1, if [ASM(x, l, t)]i > ν

0, otherwise

ν is some percentile of the entries of ASM(x, l, t)

Interpretability score (IS) given perturbation w ∈ Rd

IS(w,x, l, t) =
∥B(x, l, t)⊙w∥2

∥w∥2

Class activation maps (CAMs) identify class-specific discriminative image regions
[Zho+16]
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Quantitative Evaluation

Figure 2: IS vs. percentile ν for targeted versions of GSE vs. five other attacks. Evaluated on an
ImageNet ViT_B_16 classifier (a), and CIFAR-10 ResNet20 classifier (b). Tested on 1k images
from each dataset, 9 target labels for CIFAR-10 and 10 target labels for ImageNet.
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Visual Analysis

Figure 3: Visual comparison of successful, untargeted adversarial examples for our attack, StrAttack,
and FWnucl. (Top row) adversarial examples, (middle row) perturbed pixels highlighted in red,
(bottom row) perturbations scaled by 5. The target model is a ResNet50.
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Further Results

GSE exhibits significantly faster performance compared to benchmark methods
ASR when attacking adversarially robust models?

GSE generates perturbations that adversarially robust models struggle to defend against
effectively

Transferability when targeting a different model?
GSE demonstrates transferability (maintains a high ASR) on par with benchmark
methods
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From Adversarial Attacks to Counterfactual Explanations

Input space X
More general tabular data
Applications in credit lending,
parole, medical treatment etc

Figure 4: Two possible paths to misclas-
sify a datapoint x (shortest path (red)
vs. path adhering closest to the mani-
fold (green) of training data).

Credit lending example
Alice seeks a home mortgage loan
ML classifier considers Alice’s feature vector {Income, CreditScore, Education, Age}
Alice is denied the loan

Why the loan was denied? - Explainable AI (XAI)
CreditScore was too low

What can she do differently so that the loan will be approved in the future? - Counter-
factual Explanations (CFEs)

Increase Income by $10K
Get a master’s degree
A combination of both
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Core Difference Between Adversarial Attacks and CFEs
Both want the network to misclassify (Validity) under minimal distortion (Proximity)
Adversarial attacks push the data point out of its original class distribution
CFEs aim to nudge the data point toward the target class’s distribution (Plausibility)

Changes should apply only to valid feature ranges (Actionability)
E.g. Alice cannot decrease her age by ten years

Figure 5: (a) Methods without a plausibility term generate points near the factual blue data
points, but they remain distant from the distribution of correctly classified orange data points.
(b) Methods combined with a plausibility term produce points within high-density regions. The
dashed black line represents the decision boundary of a linear classifier.
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S-CFE: Simple Counterfactual Explanations

joint with

Moritz Wagner (TU Berlin & ZIB)
Sai Ganesh Nagarajan (ZIB)

Sebastian Pokutta (TU Berlin & ZIB)

To Appear in the Proceedings of International Conference on Artificial Intelligence and
Statistics (2025)
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CFE Formulation

Assume data points are generated from the joint density ψ : X × Y 7→ R+

q(x, t) := ψ(x|t) - density of inputs conditioned on target label t

Denoting y := x+w, basic adversarial attack problem (1) transforms into

min
y∈Rd

L(y, t) + λ∥y − x∥22

Accounts for Validity and Proximity

Utilize indicator function for Actionability constraint y ∈ A where A :=×d
i=1[−Ai,Ai],

for Ai ∈ R

IA(y) :=

{
0, if y ∈ A
+∞, otherwise

Add additional regularizers for Plausibility, Actionability, and Sparsity

ycf := argmin
y∈Rd

L(y, t) + λ∥y − x∥22 + IA(y)

− τ q̂(y, t) + β∥y − x∥0
(3)

q̂(y, t) is a density estimate for the target class t in X
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CFE Formulation (cont.)

Similarly
h(y, t) := L(y, t) + λ∥y − x∥2

2 − τq̂(y, t)
g(y) := IA(y) + β∥y − x∥0

Differentiable density estimators
Gaussian mixture models (GMMs)
Kernel density estimates (KDE)

Solve Eq. (3) via accelerated proximal gradient (APG) method [BT09]
Backpropagation to compute ∇yh(y, t)
Proximal operator for g(y) is given by the clipped iterative hard-thresholding algorithm
[ZCW21]
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Constraining the Sparsity

Regularize using the indicator function of the sparsity constraint
↪→ Improved control over sparsity

I∥y−x∥0≤m(y) :=

{
0, if ∥y − x∥0 ≤ m
+∞, otherwise

Reformulate Eq. (3)

ycf := argmin
y∈Rd

L(y, t) + λ∥y − x∥22 + IA(y)

− τ q̂(y, t) + βI∥y−x∥0≤m(y)

(4)

g(y) := IA(y) + βI∥y−x∥0≤m(y) is an indicator function
↪→ Proximal operator coincides with the projection onto the intersection

{∥y − x∥0 ≤ m} ∩ A
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Constraining the Sparsity (cont.)

Closed-form solution [CH19]

[
P{∥y−x∥0≤m}∩A(Sα(y, t))

]
i
=

{
zi, if i ∈ Q,
0, otherwise,

z = ΠA(Sα(y, t)),

Q = argtopk(v,m),

v = w ⊙ w − (w − z) ⊙ (w − z) with w = y − x

⊙ element-wise product

argtopk(v,m) indices corresponding to the m largest absolute values of the entries of v
Sα(y, t) = y − α∇yh(y, t)

ΠA(y) = argminy{∥y
′ − y∥2

2

∣∣ y′ ∈ A}

Lemma
Since g(y) := IA(y) + βI∥y−x∥0≤m(y) is a proper and lower semicontinuous function, the
convergence of APG to a critical point of the minimization problem (4) can be assured
(even for non-convex and non-smooth g(·)), under some mild conditions [LL15].
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Evaluation Metrics

Ratio of CFEs with the desired class label for Validity

2−norm for Proximity

0−norm for Sparsity

LOF metric for Plausibility [Bre+00]
Average runtime per method
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Quantitative Evaluation

Tabelle 3: CFEs for DNN classifiers on the Boston Housing and Wine datasets, and for a CNN
classifier on the MNIST dataset. Evaluated on 1000 test points for MNIST and 100 test points for
the other two datasets.

Dataset Method Validity (std) 2−norm (std) 0−norm (std) LOF (std) Time

Housing
12 features

S-CFEKDE 100 (0.00) 2.59 (1.21) 2.00 (0.00) 1.23 (0.29) 12.7
S-CFEGMM 100 (0.00) 2.91 (1.38) 2.00 (0.00) 1.12 (0.26) 13.3
S-CFEkNN

100 (0.00) 3.64 (1.73) 2.00 (0.00) 1.17 (0.31) 5.85
DCFE 100 (0.00) 3.50 (1.68) 6.86 (1.42) 1.27 (0.38) 5.33
CEM 94.0 (0.23) 2.93 (2.23) 2.99 (1.17) 1.36 (0.60) 7.51

Wine
13 features

S-CFEKDE 100 (0.00) 3.31 (1.16) 2.00 (0.00) 0.99 (0.01) 12.4
S-CFEGMM 100 (0.00) 3.44 (1.09) 2.00 (0.00) 0.98 (0.02) 13.1
S-CFEk−NN 100 (0.00) 4.04 (1.59) 2.00 (0.00) 1.01 (0.07) 5.80

DCFE 100 (0.00) 3.21 (2.70) 7.13 (1.31) 1.03 (0.18) 4.95
CEM 92.0 (0.29) 5.40 (3.25) 5.14 (2.68) 1.07 (0.14) 5.71

MNIST
784 features

S-CFEGMM 99.1 (0.09) 6.74 (2.92) 25.0 (0.00) 1.21 (0.18) 55.3
S-CFEk−NN 99.8 (0.04) 7.04 (2.99) 25.0 (0.00) 1.30 (0.22) 13.1

DCFE 99.3 (0.08) 8.06 (3.48) 118 (6.30) 1.32 (2.24) 11.8
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Robustness of Plausible CFEs to Input Manipulations

CFEs without plausibility diverge significantly
Minor input perturbations result in major ouptut shifts
Two similar individuals may receive drastically different explanations

Figure 6: Robustness of the different methods. The distance of the input data points to the original
data points on the x-axis and the distance of the generated CFEs to the CFE generated from the
original data points on the y-axis. Tested on 100 data points from each data set.
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Discussion

Plausible CFEs, in general, cannot be interpreted as action recommendations
CFEs provide hints about which alternative feature values would yield acceptance by
the predictor

Do not guide the user on which interventions yield the desired change in the real world
To guide action, causal knowledge is required

Improvement of the underlying target is more desirable than acceptance by a specific
predictor

E.g., Covid infection prediction - intervening on the symptoms may change the diagnosis
(prediction), but will not affect whether someone is infected (real-world state) [KFG23]
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THANK YOU!

Slides available at:

www.shpresimsadiku.com
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