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Counterfactual Explanations (CFEs)

Explainabile Artificial Intelligence (XAI)
Use of inherently interpretable and transparent machine learning (ML) models or ge-
nerating post-hoc explanations for opaque models
Ensure decisions produced by the ML system are not biased against a particular de-
mographic group of individuals

Counterfactual Explanations (CFEs)
Specific class of XAI in ML
Provide a link between what could have happened had input to a model been changed
in a particular way

Do not answer the why the model made a prediction - XAI
Provide suggestions to achieve the desired outcome

Appealing in high-impact areas such as finance and healthcare
Credit lending
Talent sourcing
Parole
Medical treatment
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Setup

Classification setting
Xn − input space of features
Y − output space of labels
Learned function f : Xn → Y

Figure 1: Two possible CFE paths for
a datapoint x (shortest path (red) vs.
path adhering closest to the manifold
(green) of training data).

Credit lending example
Alice seeks a home mortgage loan
ML classifier considers Alice’s feature vector {Income, CreditScore, Education, Age}
Alice is denied the loan

Why the loan was denied? - XAI
CreditScore was too low

What can she do differently so that the loan will be approved in the future? - CFE
Increase Income by $10K
Get a master’s degree
A combination of both
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CFE Definition

1 CFEs should quantify a relatively small change in only a few features
E.g., Increase only Alice’s income (e.g. by $10K instead of $50K)

2 CFEs should be realistic and actionable
E.g., Alice cannot decrease her age by ten years

Definition ([Dan+20])
Let f : Xn → Y be a prediction function. A CFE x

′
for an observation x∗ is defined as a

data point fulfilling the following:

1 (Validity) its prediction f(x
′
) is close to the desired Y,

2 (Proximity) it is close to x∗ in X ,
3 (Sparsity) it differs from x∗ only in a few features,
4 (Plausibility) it is a plausible data point according to the probability distribution PX .

For classification models
f returns the probability for a user-selected class
Y is the desired probability (range)

Shpresim Sadiku Sparse and Plausible Counterfactual Explanations



1st approach: Sparse and Imperceptible Adversarial Attacks
with Convex Hull Witness Penalty

Validity, Proximity, and Sparsity via Adversarial Attacks
Utilize the extensive literature on sparse and impreceptible adversarial attacks

E.g., SAIF: Sparse Adversarial and Imperceptible Attack Framework [Imt+22]

Set the change w := x
′
− x∗ by w = s ⊙ p

s sparsity mask
p change magnitude

Optimize simultaneously for sparsity (1−norm of s, relaxation of 0−norm) and proxi-
mity (∞-norm of p) using Frank-Wolfe (FW) on the following problem

argmin
s,p

max{0,−C · f(x∗
+ s ⊙ p) + c}

s.t. ∥s∥1 ≤ k, s ∈ [0, 1]
n

∥p∥∞ ≤ ϵ

C ∈ {−1, 1} is the target class
k is a sparsity parameter
ϵ is maximum magnitude

Plausibility by requiring the CFE to lie in the convex hull of correctly classified points
Computing the vertices of the convex hull using qhull in high-dimensions is hard (?)
Instead add a penalty term for the distance to the witness of convex hull produced by
the triangle algorithm [AKZ18]
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SAIF with Witness Penalty Algorithm
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Potential issues with this approach
Validity, proximity, sparsity, and plausibility are conflicting goals [Dan+20]
Convex hull covers a lot of empty space of low data density in high dimensions

Figure 2: Four viable CFEs of ×, all satisfying the validity. A minimizes for proximity and B
has a large classification margin (validity). Nevertheless, both A and B lie in a low density
region. C and D lie in high-density regions and have a large classification margin, but are
less sparse. However, connection between × and D is via a high-density path, hence it is
feasible for the original instance to be transformed into D despite C being simply closer.

Does our 1st approach result in CFEs in low density regions?
The witness penalty usually results in points closer to the vertices of the convex hull
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2nd approach: Accelerated Proximal Gradient (APG) Method
Plausibility via training a KDE term for the target class
Sparsity via 0− norm
Proximity via Gower distance

argmin
w

max{0,−C · f(x∗ +w) + c}+ λ∥w∥0 + Gow(w)−KDE(x∗ +w, t)

t is the target class
Gower distance is defined by

Gow(w) :=
1

n

n∑
i=1

δGow(wi) ∈ [0, 1], δGow(wi) :=


1

Ai
|wi|, if xj is numerical

I
xj ̸=x

′
j
,

if xj is categorical

Actionability - Ai the value range for feature i, extracted from the observed dataset (or
given by the user)
For numerical data, we have box constraints (|wi| ≤ Ai)
Use the indicator function such that

I[−Ai,Ai]
(wi) :=

{
0, if wi ∈ [−Ai,Ai]

+∞, otherwise

New problem for numerical data

argmin
w

max{0,−C · f(x∗ +w) + c}+ λ∥w∥0 + I[−A,A](w)−KDE(x∗ +w, t)
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2nd approach: Accelerated Proximal Gradient (APG) Method
Denote h(x∗ +w) := max{0,−C · f(x∗ +w) + c} −KDE(x∗ +w, t)
Do a quadratic approximation h̃L(x∗ +w) to h(x∗ +w)
Replace ∇2h(x∗ +w) by L

2
I

wk+1 = argmin
w

h̃L(x
∗ +w) + λ∥w∥0 + I[−A,A](w)

= argmin
w

∇wh(x
∗ +wk)T (w −wk) +

L

2
∥w −wk∥22 + λ∥w∥0 + I[−A,A](w)

= argmin
w

L

2
∥[wk −

1

L
∇wh(x

∗ +wk)]−w∥22 + λ∥w∥0 + I[−A,A](w) (1)

How do we compute ∇wh(x∗ +wk)?
In case of the Gaussian normal kernel [Rac+08]

KDE(x
∗
+ w, t) :=

1

n

n∑
i=1

e
−∥w−bi∥

2
2/2σ2

where bi := −(x∗ − xi) for correctly classified points xi

Then

∇wKDE(x
∗
+ w, t) = −

1

nσ2

n∑
i=1

(w − b
i
)e

−∥w−bi∥
2
2/2σ2

Instead of backpropagating the whole h function, use the closed-form solution for the
KDE term
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2nd approach: Accelerated Proximal Gradient (APG) Method
Let g(w) := λ∥w∥0 + I[−A,A](w)

Solution to Eqn. (1) is denoted as

Prox 1
L
(wk −

1

L
∇wh(x

∗ +wk)) = argmin
w

L

2
∥[wk −

1

L
∇wh(x

∗ +wk)]−w∥22

+ λ∥w∥0 + I[−A,A](w) (2)

Obtain the solution explicitly [ZCW21]
Let

SL(w) = w −
1

L
∇wh(x

∗
+ w), ∀w ∈ [−A,A]

Π[−A,A](w) = argmin
w

{∥y − w∥ : y ∈ [−A,A]}, ∀w ∈ Rn

Solution to Eqn.(2) for i = 1, 2, ..., n is given by [XZ13]

wk+1
i =

{
[Π[−A,A](SL(w

k))]i, if [SL(w
k)]2i − [Π[−A,A](SL(w

k))− SL(w
k)]2i >

2λ
L

0, otherwise
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Can we drop the Validity requirement?

Classification setting
Generating process ψ = (Xn,Y, p)

p : Xn × Y 7→ R+ denotes joint density
{x ∈ Xn| p(x, y) ≥ δ} closed for all δ > 0, y ∈ Y

Theorem (Model free δ−plausible CFEs under zero risk classifiers [AH20])
Let F be the set of all classifiers f : Xn → Y that have zero risk on the generating process
ψ, i.e., f ∈ F ⇔ Ex,y∼p[1(f(x ̸= y))] = 0. Then the following holds
∀f ∈ F , (x, ycfe) ∈ Xn × Y\{y} :

argmin
w

θ(w) s.t. f(x
′
) = ycfe ∧ p(x

′
, ycfe) ≥ δ

⇔ argmin
w

θ(w) s.t. p(x
′
, ycfe) ≥ δ

θ : Xn ×Xn 7→ R+ a distance metric in Xn
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3rd approach: k−Nearest Neighbors (kNN) Approach

Instead of training a KDE, simply consider k−Nearest Neighbors (kNN) of x∗

Denote f(x∗ +w) := max{0,−C · f(x∗ +w) + c} and rewrite

argmin
w

f(x∗ +w) + λ∥w∥0 + I[−A,A](w) + kNN(x∗ +w, Xobs) (3)

x1, ...,xk ∈ Xobs denote the k nearest observed datapoints

kNN(x
∗
+ w, X

obs
) :=

k∑
i=1

a
i 1

p

p∑
j=1

1

A2
j

(
(x

∗
+ w)j − x

i
j

)2
,

k∑
i=1

a
i
= 1

Reformulate Eqn. (3) in a way that lends itself to the application of ADMM

argmin
z,w,y

f(x∗ + z) + λ∥y∥0 + I[−A,A](y) + kNN(x∗ +w, Xobs)

s.t. z = y, z = w
(4)

z,y are newly introduced variables
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3rd approach: k−Nearest Neighbors (kNN) Approach

Perform ADMM by minimizing the augmented Lagrangian of Eqn. (4)

L(z,y,w,m,n) = f(x∗ + z) + λ∥y∥0 + I[−A,A](y) + kNN(x∗ +w, Xobs)

+m⊤(y − z) + n⊤(w − z) +
ρ

2
∥y − z∥22 +

ρ

2
∥w − z∥22 (5)

m,n are Lagrangian multipliers
ρ is a penalty parameter

{w(k+1),y(k+1)} = argmin
w,y

L(z(k),y,w,m(k),n(k)) (6)

z(k+1) = argmin
z

L(z,y(k+1),w(k+1),m(k),n(k)) (7)

m(k+1) = m(k) + ρ(u(k+1) − z(k+1))

n(k+1) = n(k) + ρ(y(k+1) − z(k+1)) (8)

Can we find the solution to Eqns. (6)-(8) in parallel and exactly?
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w−solution

For the w we have

w(k+1) = argmin
w

kNN(x∗ +w, Xobs) + n(k)⊤(w − z(k)) +
ρ

2
∥w − z(k)∥22

= argmin
w

k∑
i=1

ai 1

p

p∑
j=1

1

A2
j

(
(x∗ +w)j − xi

j

)2
+
ρ

2

∥∥∥w − c(k)
∥∥∥2
2

(9)

c(k) =
(
z(k) − n(k)

ρ

)
Denote bi := −(x∗ − xi), then Eqn. (9) in 1D is equivalent to

argmin
w

1

A2
jp

k∑
i=1

ai(w − bi)2 +
ρ

2
(w − c)2

∑k
i=1 ai = 1 are given

Simply solve the resulting quadratic equation
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y−solution and z−solution

For the y we have

y(k+1) = argmin
w

λ∥y∥0 + I[−A,A](y) +m(k)⊤(y − z(k)) +
ρ

2
∥y − z(k)∥22

= argmin
w

λ∥y∥0 + I[−A,A](y) +
ρ

2

∥∥∥y − dk
∥∥∥2
2

(10)

d(k) =

(
z(k) − m(k)

ρ

)
Similarly to APG, solution to Eqn. (10) for i = 1, ..., n is given by [ZCW21]

w
(k+1)
i =

{
[Π[−A,A](d

(k)
i )]i, if [d

(k)
i ]2i − [Π[−A,A](d

(k)
i ) − d

(k)
i ]2i > 2λ

L

0, otherwise

For the z - Eqn. (7)
Split the function f and do a first-order Taylor expansion at the point zk which yields
a quadratic program which has a closed-form solution [Xu+19]
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Discussion and Future Work

How do we extend our approaches to be model-agnostic?
Approximate the AI system with a substitute model [Gui+19]
Use our proposed method to generate CFEs using our substitute model
Study the role of substitute model used [Dan+24]
Simply calculate the gradients without training a substitute model

How do we extend our approaches to include categorical variables?
Linearly ordered categorical data [Dhu+19]
One-hot encoding [Rus19]
GANs paper dealing with categorical data [Nem+22]

How do we measure plausibility?
Log-KDE value of generated CFEs [AH20]
Plausibility reward function via Autoencoder reconstruction loss [BLM23]
The distance to k−nearest neighbors [Dan+20]
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Discussion and Future Work

Plausible CFEs, in general, cannot be interpreted as action recommendations
CFEs provide hints about which alternative feature values would yield acceptance by
the predictor

Do not guide the user on which interventions yield the desired change in the real world
To guide action, causal knowledge is required

Proximity and plausibility are conflicting objectives [Dan+24]
Oftentimes, there is only little data close to the decision boundary, and jumping just
over the boundary can lead to implausible CFEs

Improvement of the underlying target is more desirable than acceptance by a specific
predictor

E.g., Covid infection prediction - intervening on the symptoms may change the diagnosis
(prediction), but will not affect whether someone is infected (real-world state) [KFG23]
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THANK YOU!

Slides available at:

www.shpresimsadiku.com
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